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ABSTRACT 

The purpose of t h i s  experiment was t o  measure t h e  p r o b a b i l i t y  

of c o l l i s i o n  for  momentum t r a n s f e r  of slow e l e c t r o n s  i n  a weakly ionized 

n i t rogen  plasma af te rg low.  The p r o b a b i l i t y  of c o l l i s i o n  was ca lcu la t ed  

i n  t h e  late .afterglow on t h e  b a s i s  of a hard sphere model i n t e r a c t i o n  be- 

tween e l e c t r o n s  and n e u t r a l s .  The value obta ined  over t h e  energy range 

.040 ev  t o  .078 ev i s  18.1 + - 1.6 (em Torr)-'. The t ime taken  by t h e  

e l e c t r o n  gas  t o  r e l a x  from t h e  high temperature of t h e  a c t i v e  d ischarge  

t o  room temperature  and t o  a Maxwellian d i s t r i b u t i o n  i s  found t o  be much 

longer  than  t h a t  p red ic t ed  by a cons idera t ion  of e l a s t i c  c o l l i s i o n s  be-  

tween e l e c t r o n s  and n e u t r a l s .  A s  expected, t h e  rate of r e l a x a t i o n  t o  

room temperature  and t o  a Maxwellian d i s t r i b u t i o n  i s  a sha rp  f u n c t i o n  

of p re s su re .  The reason  f o r  t h e s e  e f f e c t s  i s  a s c r i b e d  t o  t h e  d is turbance  

of t h e  a f t e rg low by i n t e r a c t i o n s  involving metas tab le  n i t r o g e n  p a r t i c l e s .  
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PART I 

INTRODUCTION 

The purpose of t h i s  inves t iga t ion  was t o  determine experimentally 

the  p robab i l i t y  of c o l l i s i o n  fo r  momentum t r a n s f e r  of slow e lec t rons  i n  

a ni t rogen plasma afterglow. 

some of t h e  discrepancy t h a t  e x i s t s  i n  the measured values of the  proba- 

b i l i t y  of c o l l i s i o n  fo r  e lec t rons  i n  nitrogen i n  t h e  low energy range. 

The experimental technique used w a s  novel i n  t h a t  t he  apparatus has the  

a b i l i t y  t o  monitor e l ec t ron  temperature as a funct ion of t i m e .  

vious measurements were in t e rp re t ed  t o  have been made a f t e r  the  t i m e  

necessary f o r  the  e l ec t ron  energy t o  decrease t o  room temperature. This 

t i m e  has genera l ly  been estimated on the  basis  of e l a s t i c  co l l i s ions  be- 

tween the  e lec t rons  and neu t r a l  p a r t i c l e s .  Such a t i m e  i s  almost cer-  

t a i n l y  too low i n  nitrogen, owing t o  the  presence of an  energy source 

which a c t s  t o  increase the  energy of the  electrons.  This source i s  the  

exc i t a t ion  energy of long-lived metastable molecules. Most probably 

therefore ,  some of the  r e s u l t s  reported by other workers as taking place 

a t  room temperature a c t u a l l y  involved higher energy e lec t rons .  

wave radiometer which measures the  e lec t ron  temperature as a fimction of 

t i m e  i s  indispensable f o r  a thorough analysis  of an afterglow. 

It is hoped t h a t  these  r e s u l t s  w i l l  resolve 

18 

A l l  pre- 

The micro- 

Our object ive a l s o  requi res  t h a t  we measure the  plasma conductivity 

as la te  i n t o  t h e  afterglow as possible.  The apparatus used f o r  the  de- 

terrriination of t he  plasma conductivity i s  a microwave interferometer  or 

bridge. 

One part propagates through the  arm of the bridge which contains the 

plasma and en te r s  t he  mixing sect ion.  

I n  t h i s  device the  microwave s ignal  i s  s p l i t  i n t o  two p a r t s .  

The other  part e n t e r s  t he  mixing 



sect ion from the  opposite d i r ec t ion .  The consequent in te r fe rence  pa t t e rn  

i s  detected and displayed on an osci l loscope.  The phase s h i f t  and 

at tenuat ion introduced by t h e  plasma can be measured i n  t h i s  way and 

the  plasma conductivity can be calculated.  The c o l l i s i o n  frequency i s  

obtained from the measured conduct ivi ty  and i s  r e l a t e d  t o  the  probabi l i ty  

of co l l i s ion  through the  expression 
0 d m ( v )  = v p 

where i s  the  c o l l i s i o n  frequency f o r  momentum t r ans fe r  between the  
e lec t rons  and neu t r a l  p a r t i c l e s  

v i s  the  e l ec t ron  ve loc i ty  

0 i s  the  pressure normalized t o  0 C PO 

P i s  the  probabi l i ty  of c o l l i s i o n  
C 

The microwave s igna l  i s  of such a low l e v e l  t ha t  it does not d i s -  

t u r b  t h e  plasma by heating the  e lec t rons .  Meaningful measurements were 

made from 50 microseconds t o  200 microseconds i n t o  the  afterglow. After 

t h i s  time the  a t tenuat ion  due t o  the  plasma w a s  too  weak t o  be recorded 

although phase shift-data can be taken f o r  a longer period. 

2 



P r n  I1 

THEORY AND INSTRUMENTATION 

A. Microwave Conductivity of a Plasma 

The conduct ivi ty  of a free e lec t ron  gas  i n  a vacuum i s  ninety 

degrees out  of phase with t h e  e l e c t r i c  f i e l d .  

t h e  a l t e r n a t i n g  e l e c t r i c  f i e l d  does not impart energy on t h e  average 

t o  the e lec t ron .  

e l ec t rons  i n  the  e l e c t r i c  f i e l d  i s  disturbed by c o l l i s i o n s  with neu t r a l  

p a r t i c l e s .  

i s  i n  phase with the e l e c t r i c  f ield,  indicat ing an energy t r a n s f e r  

from t h e  e l e c t r i c  f i e l d  t o  t h e  random motion of the  e lec t rons .  

This f a c t  implies t h a t  

I n  a weakly ionized plasma the  ordered motion of the 

The plasma conduct ivi ty  thereby acquires  a component which 

Two approaches may be made t o  t h e  der iva t ion  of a formula f o r  

t h e  conductivity.  

t he  Boltzmann equation of k i n e t i c  theory.  

t h a t  a l l  the  e lec t rons  behave i n  the  same way as an "average" e l ec t ron  

and procedes on the  bas i s  of the  Langevin equation. 

l a t t e r  approach f i r s t  . 

The more r igorous approach i s  based upon the use of 

A simpler approach assumes 

W e  d i scuss  t h i s  

1. The Microwave Conductivity from the  Average Electron Theory 

The conduct ivi ty  f o r  t he  plasma is obtained by s e t t i n g  the  t o t a l  

r a t e  of change of momentum of t h e  average e l ec t ron  i n  t h e  e l e c t r i c  f i e l d  

d i r ec t ion  equal  t o  the  rate of change of momentum due t o  the  f i e l d ,  plus  

the  rate of change of momentum i n  the  f i e l d  d i r e c t i o n  produced by c o l l i -  

s ions . 8 

+ m<v> 
d t  -e E exp jut = 

0 

3 



where 

i s  the  maximum amplitude of t he  e l e c t r i c  f i e l d  

(u i s  the  angular frequency of t he  e l e c t r i c  f i e l d  

Eo 

< v > i s  t h e  average e l ec t ron  ve loc i ty .  

It follows t h a t  

< v >  = -e Eo exp jut/m( Vm + jw)  

The current densi ty  J i s  given by 

d ne E exp jut 
( 2 )  

0 J = - n e ( v )  = 
m( dm + j m )  

where n i s  t h e  number dens i ty  of the  e l ec t rons .  The conduct ivi ty  d 

i s  a complex quant i ty  which can be s p l i t  i n t o  i t s  r e a l  and imaginary pa r t s  

and wri t ten as 

( 3 )  
J - = br + j u i  E C Y - =  

The expressions f o r  d and bi can be obtained from (2) and (3) and a r e  r 

and 

The r a t i o  %/? i s  therefore  

I 

This r e l a t i o n  i s  independent of e l ec t ron  densi ty .  

4 



2. The Microwave Conductivity from the  Boltzmann Equation 

We w i l l  give here an  expanded version of t he  theory due t o  Phelps 

4 e t  al .  
4 The Boltzmann equation f o r  t he  electrons i s  given by 

where f is  the  e lec t ron  ve loc i ty  d i s t r ibu t ion  funct ion and 
- 
a i s  the  acce lera t ion  of the  electrons.  

The plasma densi ty  is  assumed t o  be s p a t i a l l y  uniform so t h a t  f i s  

independent of the  pos i t ion  coordinate and the  t h i r d  term of ( 5 )  can be 

equated t o  zero.  

We now assume a form f o r  f given by 

f = f  + f  (6  1 0 1  

where f o  i s  t h e  Maxwellian d i s t r ibu t ion  function and 

f l  is  t h e  per turbat ion term due t o  the appl ied f ie lds .  

If (6) i s  subs t i t u t ed  i n t o  (5) w e  obtain two terms on the  r i g h t  hand side. 

(8 fo/dtlcoll 
the  equi l ibr ium d i s t r ibu t ion .  (a f,/a tIcoll can be wr i t ten  as -fl Urn, 

t h a t  i s ,  the  rate of destruct ion of the  preferred motion of t he  e lec t rons .  

i s  equal  t o  zero because the Maxwellian d i s t r i b u t i o n  i s  

This assumes t h a t  t he  c o l l i s i o n  frequency for momentum t r a n s f e r  Sm ex- 

presses the  rate a t  which e lec t rons  lose  t h e i r  preferred motion. i s  

usual ly  a funct ion of t h e  e l ec t ron  veloci ty .  

If an electromagnetic wave at a microwave frequency i s  propagating 

through the  plasma an a l t e rna t ing  e l e c t r i c  f i e l d  i s  present which i s  given 

by 
- jot - 

E = E e  
0 

- 
so  t h a t  the acce lera t ion  of the  e lec t rons  a i s  given by 

5 



- e jut a = - -  
m Eo e 

Inse r t ing  (6) Pn ( 5 )  under these  conditions we obtain 

Now the  f i e l d  induced part of f which i s  f l  w i l l  have a time va r i a t ion  

given by e Jut so t h a t  

- =  
1 j w f  a fl 

d t  

I f  w e  subs t i t u t e  (10) i n  (9) and solve f o r  f l  we obta in  

e 1 E eJut . vv f o  
f l = m  ~m 0 

m 

The current  densi ty  J i n  a plasma i s  

J =  

If equation (6) 

Now f i s  t h e  

of v so t h a t  

equal t o  zero.  

0 

i s  subs t i t u t ed  i n t o  (12) we obtain terms i n  f and f l .  

Maxwellian d i s t r i b u t i o n  funct ion which i s  an even funct ion 

J- 

0 

00 

f v dv i s  an odd funct ion of v and i s  therefore  
0 -a3 

The cur ren t  densi ty  thus becomes 

J = -e v f l  dv 
- G o  

Subs t i tu t ing  (11) i n t o  (13) gives  

where 2, has been wr i t ten  for 0 m. 

I f  w e  assume t h a t  

along the x-axis, 0- i s  then the  conductivity i n  the  x d i rec t ion .  It i s  

given by the  r e l a t i o n  

- $, t he  u n i t  vector  i n  t h e  f i e l d  d i rec t ion ,  i s  di.rec+,ed 

6 



For a near ly  i so t rop ic  d i s t r i b u t i o n  funct ion the  following two re- 

l a t i o n s  are e a s i l y  deduced 

2 

3 
2 - v  - V 

X 

Subs t i t u t ing  (16) and (17) i n t o  (15) we obtain 

The r a t i o  of t h e  real t o  t h e  imaginary part of t he  conduct ivi ty  from 

equation (18) gives 

dv 

- br 
0-. 
1 

J 

I - dv 
J 0 1 + (2)' 

This  r e l a t i o n  i s  independent of e l e c t r o n  density.  

As the  d i s t r i b u t i o n  funct ion f o  is Maxwellian, then  
2 m v  

m 
f (v) = n (-) 
0 2rr kT e 

which can be wr i t ten  i n  the  form 

7 



U 
W 

- -  
f o ( v )  = A e 

where 

w i s  kT 
m 3/2 

A i s  n(-) 2n k!l 

T i s  the  e lec t ron  temperature,  

Subs t i tu t ing  (209 i n t o  (19) gives 

du 

du 

2 When (u 77 y2 equation (21) becomes 

6. 
1 

The denominator of (22) can be evaluated as follows 

Put (23) i n t o  (22) t o  obtain 

a 



where we bear  i n  mind that is  a function of u. 

It i s  known from the  theory of l inear  i n t e g r a l  equations, t h a t  t h i s  

i n t e g r a l  can be solved approximately by a f i n i t e  polynomial of t he  first 

kind." We therefore  assume t h a t  Ur/T can be expanded i n  the  form 

where j and -t! a r e  integers .  Equation (24) can then be wr i t t en  

du u exp - - 0 1.5 U 4 -  
W 

-W 
6. 
1 

This equation i s  i n  the  form of a Laplace transform, i f  the  following 

subs t i t u t ions  are made. 17 

1 

0- r - 1 
2.5 ui d P >  = - - 

P 

Equation (26) may now be wr i t ten  

Taking t h e  inverse Laplace transform of (29) we obtain 

-1 where L i s  an inverse Laplace t r a n s f o r m  operator.  Subs t i t u t e  r e l a t i o n s  

9 



(25) and (27) i n t o  (30) and obtain 

which can be wr i t ten  as 

1 
j 

f ( u )  = 1 a 

If 2.5 + . 5 j  i s  an  in t ege r  

1 
L-l 2.5+.5j 

P 

then j i s  a n  odd number and 

Equation (31) can be wr i t ten  as follows 

Solving f o r  U('u) w e  obtain 

I n  pa r t i cu la r  l e t  

then 

10 



Since u = - m v2 then 
2 

If u i s  i n  e l ec t ron  v o l t s  then 

1/2 
U 112 

v =  i n  un i t s  of (ev) 
1.69 x 

and because L, = v p P 0 c' - (34) 
-1 lo-' v (cm-Torr) 

Subs t i t u t e  equation (33) i n t o  (34) t o  obtain 

and 
a a 

24 Pc = 1.69 x $ fi w [ 2 + 2 u + 

versus w curve i s  p lo t ted  and t h r e e  points  whose =E Therefore i f  a - 
6. 
1 

3 
projec t ions  on the  w 

can be determined. Pc i s  then known over t h i s  energy range. Note once cigaic 

that t h e  assumption of a Maxwellian d i s t r ibu t ion  f o r  the  e lec t rons  has been 

axis are equal ly  spaced are chosen, al, a2, and a 

made i n  t h i s  der ivat ion.  

3 .  The Conductivity of a Plasma f o r  Two Special  Cases 

Two spec ia l  cases are i n t e r e s t i n g  becuase they are soluble  and repre-  

s en t  phys ica l ly  realizable s i tua t ions .  The case of constant mean f r e e  pa th  

represents  t he  s i t u a t i o n  f o r  a b i l l i a r d  b a l l  o r  hard sphere in t e rac t ion .  

This  i s  an exce l l en t  approximation for slow e lec t rons  i n  a plasma after- 

glow.l5 The case of constant c o l l i s i o n  frequency agrees with t h e  r e s u l t s  

11 



of the average e lec t ron  theory.  

other with a force varying inverse ly  as 

distance.  Mplecules obeying t h i s  i a w  are ca i l ed  Maxweiiian molecuies. 

It represents  molecules r epe l l i ng  each 

the  f i f t h  power of t he  separat ion 

a.  Constant Mean Free Path 

Margenau13 has a l s o  derived an expression f o r  t he  a .c .  conduct ivi ty  

of a plasma s t a r t i n g  from the  Boltzmann equation. 

f o r  u similar t o  (18) above. Making the  constant mean free path 

assumption, t he  c o l l i s i o n  frequency 2, can be expressed as a funct ion of 

ve loc i ty  by 

H e  obtains  an expression 

or  simply 2, = - l v  (36) Lconst L 
V L ) =  - 

where L i s  the  mean f r e e  path, 
so tha t  the  in tegra t ion  over ve loc i ty  space can be ca r r i ed  out ( r e f e r  t o  

equation (18)). I f ,  i n  addi t ion,  the symmetric part of t he  ve loc i ty  d i s -  

t r i bu t ion  funct ion i s  taken t o  be the  Maxwellian d i s t r i b u t i o n  then 

Margenau’? obtains  

The funct ions K2(x1) and K (x ) can be expressed i n  terms of t he  

exponential i n t e g r a l  Ei(-x ) and the  e r r o r  funct ion e r f  [ ( ~ ~ ) ~ / 2 ]  as 

follows 

3/2 1 

1 

K (x ) = 1 - x - x exp x Ei(-xl)  
1 1  1 

12 



The two following asymptotic forms fo r  the  real and imaginary pa r t s  

of the  conduct ivi ty  are given by Oskam. 

For t h e  case when 

16 

2 2 
u) 7 > (L’ > 

a( t )  = - 2 < d >[I- - ?  (*I2 u) ....I (38) 
3 m u  r 

m u )  U i ( t )  = - (39) 

f o r  a Maxwellian d i s t r ibu t ion .  1 8m - < Y >  where < JJ > = 7 - (x) 
2 And f o r  the  case when : 0 7‘ > > 0 

The r a t i o  of t he  real  t o  the  imaginary components of t he  conduct ivi ty  can 

be asymptotically obtained t o  f i r s t  order in  < Y > /a 

as 

f o r  these  two cases 

where ru i s  an asymptotic symbol. 

The case of i n t e r e s t  t o  us i n  the present work f u l f i l l s  t he  con- 

2 2 dition t h a t  0 ,7<u> . 



b. Constant Col l i s ion  Frequencx 

The conductivity f o r  t h i s  case i s  e a s i l y  obtained by in t eg ra t ing  

equation (18) by assuming a Maxweiiian ve loc i ty  d i s t r i b u t i o n .  

d =  [ $ J ]  
1+ (v/cu) m c u  (44) 

The r a t i o  of t he  r e a l  t o  the  imaginaky p a r t s  of t he  conduct ivi ty  y i e l d  

This i s  the  same r e s u l t  as obtained f o r  t he  average e l ec t ron  conduct ivi ty .  

B.  Cross-Sections and Probabi l i ty  of Collision 

The average number of c o l l i s i o n s  per u n i t  t i m e  undergone by an 

e lec t ron  of speed v, with molecules of a l l  other  speeds, i s  ca l l ed  the  

co l l i s ion  frequency of an e l ec t ron  of speed v. 

by the r e l a t i o n  

It i s  expressed mathematically 

where L(v) i s  the  mean free path of e l ec t rons  of speed v and 

1.s the  c o l l i s i o n  frequency of eLect.ro;is w i t h  wlecvlles dC 
To a good approximation slow e lec t rons  i n  a weakly ionized gas 

in t e rac t  with the  molecules i n  a b i l l i a r d  b a l l  type e l a s t i c  c o l l i s i o n .  

Electrons having an  energy above the  f irst  exc i t a t ion  l e v e l  of t he  gas 

(v ibra t iona l  o r  r o t a t i o n a l )  w i l l  l o s e  t h e i r  excess energy almost a t  once 

t o  the n e u t r a l  atoms by i n e l a s t i c  c o l l i s i o n s .  

number of  i n e l a s t i c  c o l l i s i o n s  i s  negl ig ib le  with respec t  t o  e l a s t i c  

co l l i s ions  with molecules i n  t h e i r  ground state. 

Thus i n  an afterglosJ the 

14 



Col l i s ion  frequencies measured by aicrovave techniquss are averaged 

over the  ve loc i ty  d i s t r i b u t i o n  function of the co l l i d ing  p a r t i c l e s ,  so 

t h a t  

< &  7 - - 1 U f d c  (47) 

Now w e  can write 

where Q is  t h e  molecular c o l l i s i o n  cross-sect ign and 

N i s  t h e  number dens i ty  of the  molecules. 

It is  the re fo re  possible  t o  w r i t e  < 2, > as 
C 

The expression<ZIc 7 = N < v ) Q  i s  only correct  i f  Q can be considered 

constant f o r  a l l  values of t h e  veloci ty .  Another u se fu l  approximation i s  

t o  consider U a constant over the  veloci ty  range of i n t e r e s t .  Then 

< d e  > = uc (50 )  

a 
v’ This implies Q = - where a i s  a propor t iona l i ty  constant.  We then 

obta in  

For an e l a s t i c  co l l i s ion  between an e lec t ron  and a n e u t r a l  molecule, 

The change i n  momentum the speed of the molecule i s  e s s e n t i a l l y  unchanged. 

of t he  e l ec t ron  along i t s  i n i t i a l  path is  

A Momentum = (1-cos Q) mtM 



and the  f r a c t i o n a l  change i n  energy i s  

Au (1-cos e )  7 - m M  = 2 -  A Energy 
U 

Energy (&Mi2 
where 

electron.  

Now 

0 i s  the  angle between t h e  inc ident  and sca t t e red  d i r ec t ions  of t he  

& = 2m (l-cos 8) M 
i f  M > > m .  

U 

If p(8)  s i n  8 d0 d f  i s  the  probabi l i ty  t h a t ,  due t o  a c o l l i s i o n  

the e l ec t ron  w i l l  be sca t t e red  i n t o  the  s o l i d  angle d a  about 0 ,  t h e  mean 

f r a c t i o n a l  energy loss per c o l l i s i o n  w i l l  be 

p(0) Q s i n  0 de d e  

sca t te r ing  i n t o  the  s o l i d  angle 

i s  ca l l ed  the  d i f f e r e n t i a l  cross-sect ion f o r  e l a s t i c  

d s l .  l4 It i s  wr i t ten  

I(v,8) s i n  0 de df 

and 

I (v ,0 )  s i n  0 d0 de 

2m Qm 
M Q  The mean f r a c t i o n a l  energy loss per c o l l i s i o n  becomes 

where 

I(v,0) (1-cos 0 )  s i n  0 d0 dp ( 5 3 )  

Qm d i f f e r s  from Q only if  there  i s  a pronounced concentration of 

sca t te r ing  i n  e i the r  t he  forward or t he  backward d i r ec t ions .  

If the  model of c o l l i s i o n  i s  t h a t  of hard spheres Qm = Q and 

16 



om = Qc. This  i n t e r a c t i o n  denotes I ( e )  independent of 8. For slow 

e lec t rons  t h i s  i s  a good approximation i n t h e  absence of Ramsauer e f f e c t s .  

Now l e t  us  w r i t e  

om = N Qm v 

where Lm(v) i s  the  mean free path f o r  momentum t r a n s f e r  and 

Lm i s  defined by - 1  
Lm= 

Equation (54) agrees with t h e  previous def in i t ion ,  Gm = v popc, i f  

P the  momentum t r a n s f e r  c o l l i s i o n  probabi l i ty  takes  i n t o  account t h e  

f a c t  t h a t  t he  e f fec t iveness  of co l l i s ions  i n  r e s i s t i n g  cur ren t  flow i n -  

creases  as the  sca t t e r ing  angle increases.  

e 3  t 

C . Recombination 

In  a plasma t h e  fundamental l o s s  processes are d i f fus ion ,  recombin- 

a t ion ,  and attachment. This  can be expressed mathematically 

2 - -  a n  - D v  n -  p a n  - a n n +  a t  e 

where n i s  t h e  e l ec t ron  densi ty  

n i s  the  ion  dens i ty  
f 

D 

a! i s  the  recombination coef f ic ien t  

i s  t h e  ambipolar diffusion coef f ic ien t  f o r  e lec t rons  and ions 

ua i s  t h e  attachment coe f f i c i en t ,  

Attachment takes place only i n  s t rongly  electronegat ive gases such as oxygen 



and can be assumed t o  be zero i n  our case.  A l s o  d i f fus ion  losses  are 

negl igible  with respect  t o  recombination f o r  approximately the  f i r s t  160 

microseconds under the  experimental conditions encountered here.  This  

f a c t  has been experimentally demonstrated by S to t z .  18 

- -  - a n  
d t  

. .  

Now the  e l ec t ron  and ion  

f o r  the  e lec t ron  dens i ty  

- l +  1 
n n 
- - -  

0 

a n n +  = a n '  (57 )  

dens i t i e s  are equal  so t h a t  (57) can be solved 

as follows 

a t  

where n i s  the  e l ec t ron  concentration a t  t = 0. 

From equation (58) the following r e s u l t  i s  obtained 

0 

The r e l a t i v e  change i n  t h e  e l ec t ron  densi ty  i s  proport ional  t o  the  

densi ty .  Therefore the  r e l a t i v e  change i n  dens i ty  i s  g rea t e s t  i n  t h e  

more dense regions of the  plasma. This e f f e c t  tends t o  make the  e lec t ron  

density uniform. The prevalent recombination process i n  t h e  ni t rogen 

afterglow seems t o  be 18 

+ 
N + N2 4 N: 2 

N,++ + e + N~ + N~ * 

The a s t e r i s k  denotes an exci ted atom. This i s  a two-step d i s soc ia t ive  

process. 

18 



D. Radiation Temperat-we Measurements 

It can be shown t h a t  t h e  r a t i o  of t h e  emission 

equals the  blackbody Aw coe f f i c i en t  t o  the  absorption coef f ic ien ts  

i n t e n s i t y  B ( c o , T ) ~ ~ ,  assutxifig a Maxwcllian d i s t r i b u t i o n  of e l ec t ron  ve loc i t i e s .  

Tha t  i s ,  

(60)  
pw 
*w 
- = B(U,T) 

Since Pw and A are proper t ies  of the r ad ia t ing  e lec t rons ,  equation 

(60) should be t r u e  whenever the  e lec t rons  have a Maxwellian d i s t r i b u t i o n .  

No o ther  c r i t e r i a  such as exact  thermal equilibrium need be imposed. 

The r ad ia t ion  a t  microwave frequencies from plasmas i s  caused by 

w 

) 1 

i nd iv idua l  o r  co l l ec t ive  motions of free e l ec t rons .  

o r ig ina t e s  from the free e lec t rons  as they move about i n  the  plasma 
I 

co l l id ing  with ions and n e u t r a l  pa r t i c l e s .  A s  a r e s u l t  of an i n t e r a c t i o n  

a photon of frequency w i s  e i t h e r  emitted or  absorbed. The frequency 

of tne  photon i s  given by t h e  Bohr frequency condition. 

The thermal r ad ia t ion  

VI' i s  t h e  f i n a l  e l ec t ron  ve loc i ty  i n  center-of-mass coordinate system 

v '  i s  the  i n i t i a l  e l ec t ron  ve loc i ty  i n  the  center-of-mass coordin- 
ate system 

B(Ldll) 

t h e  container by the  Planck r ad ia t ion  formula ( for  one polar iza t ion) .  

t h e  i n t e n s i t y  of t he  r ad ia t ion  f i e l d , i s  given everywhere within 
1 

I n  the  Rayleigh Jeans l i m i t  f o r  low frequency kT 7 > h w 
the  exponent ia l  can be expanded i n  a power series - end s impl i f ied  as follows 

il 
k T  Lo s = source funct ion = B(U,T) = - 

0 8n3C2 



Unless the  d i s t r i b u t i o n  funct ion i s  Maxwellian T i s  a f i c t i t i o u s  temper- 

a tu re  and i s  merely a convenient way of descr ibing the  f i e l d .  5 

I n  t h i s  experiment t h e  plasma rad ia t ion  temperature i s  r e l a t e d  t o  

t h e  average energy by t h e  equation 

Average k ine t i c  energy of t he  e lec t rons  < u 7 = kT 
2 

The basic  method f o r  measuring e l ec t ron  temperature i s  a microwave pyrometer 

scheme. The advantage of t h i s  a t t a c k  i s  the  determination of e l ec t ron  

temperature without knowledge of t he  abso rp t iv i ty  of t he  plasma. Ki rchoff ' s  

6,19 

rad ia t ion  law may be s t a t e d  

Pcu = Am B(u ,T)  

where P dw i s  the  r ad ia t ion  

cu + dw, Am var ies  from uni ty  

u) 
i n t e n s i t y  i n  the  frequency range cu t o  

f o r  a blackbody t o  zero for a non-absorbing 

body. The r ad ia t ion  from the  plasma i s  compared with a known var iab le  

r ad ia t ing  standard r ad ia t ing  through the  plasma t o  a de tec to r .  

The plasma temperature i s  denoted by T and t h e  var iab le  by T . P S 

If Aw i s  the  abso rp t iv i ty  of t he  

of the plasma. The power detected 

Pol = (l-Acu) B(u Ts)  + 

plasma, 1 - AU 

i s  (see Fig.  1). 

i s  the  t ransmiss iv i ty  

Without the  plasma the  r ad ia t ion  observed i s  

Po2 = B(w Ts) 

The difference i s  

4 Po = Pol - p02 

A P  = 0, then T 
P 

i f  



Variab le  Black-body 
Standard Source 

\ 
\ 

Observer 

Fig.  1. Arrangement f o r  Radiation Measurements 
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no matter what t he  value of A i s .  By pe r iod ica l ly  i n s e r t i n g  the  plasma w 

between t h e  standard and the  de tec tor ,  t he  s tandard i s  ad jus ted  u n t i l  

18 _. 
A p = 0 .  lS t he  blackbody r ad ia t ion  term B(w,T) i s  expressed as 

i t s  equivalent temperature, the  temperature equivalent of t he  microwave 

power a t  point  T1 i s  (see Fig.  2 )  

1 
+ To (1 - 1 

P P 
- 
a T1 = Ts 

To i s  the room temperature 
a i s  adjustable  

P 

T1 i s  a known var iab le  temperature 

Ts i s  a standard noise source and equals the  temperature equiva- 
l e n t  of the  microwave power of t h e  source. 

au i s  the  a t tenuat ion  of the plasma 

The r e l a t i o n  between Aw and a i s  the  following w 

1 

a = 1 no a t tenuat ion  

au = m perfec t  absorption 

0 

If the  temperature equivalent of e lec t rons  i n  a plasma i s  T and 

t h e i r  a t tenuat ion  ae, t h e  power seen by t h e  de tec tor  i s  

T = T  - I + T (1 - ') 
ae R 1 ae 

18 A t  the  point  where TR decays through the  known temperature T1 

1 1 T (1- 7) = T (1- -) 
ae ae R 

A t  t h i s  point  T = T = T1. The sampling t i m e  f o r  temperature deter- 

mination i s  ad jus tab le .  

R 
The experiment i s  e s s e n t i a l l y  a r e p e t i t i v e  one 
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F i g .  3. Microwave C i r c u i t  f o r  Temperature Measurements 
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t 

F i g .  2 .  Temperature Measurements Timing Diagram 
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at  100 cps. The discharge rate i s  a 100 cps. 

su f f i c i en t  time f o r  t he  plasma t o  decay between the  discharges.  

This  frequency gives  

Figure 3 ind ica tes  t he  microwave c i r c u i t  f o r  temperature measure- 

The c i r c u i t  cons is t s  of an argon discharge tube,  a prec is ion  ment. 

a t tenuator ,  a plasma c e l l  and a microwave rece iver .  The noise standard 

i s  a blackbody a t  temperature The prec is ion  a t tenuator  i s  a t  room 

temperature 

Ts.  

To and i t s  known a t tenuat ion  i s  01 . 
P 

The microwave r ad ia t ion  de tec tor  cons is t s  of a l o c a l  o s c i l l a t o r ,  

a balanced c r y s t a l  detector ,  and a 60 mc I .F .  amplif ier  of 20 M.C. band- 

width. The I.F. of the  microwave rece iver  i s  gated on a t  200 cps.  a t  

the  time designated ts i n  Figure 2.  The detected s igna l  i s  the  cross-  

hatched pulse shown i n  t h i s  f igure .  The fundamental component of t h i s  

pulse t r a i n  i s  amplified i n  a high gain, narrow band 100 cps. ampl i f ie r ,  

and the r e s u l t  detected i n  a coherent phase de tec tor .  The temperature 

T1 i s  adjusted with the  precis ion a t tenuator  u n t i l  T = T1. Now the  

fundamental component of the pulse t r a i n  i s  200 cps.  A pen recorder in- 

dica tes  a n u l l .  The temperature s e n s i t i v i t y  i s  + - 50 K near room temper- 

a ture  and + l O o K  between 600' and 1000°K. 

0 

E. Microwave Bridge Measurements 

The wave equation f o r  an e l e c t r i c  

t i o n  passing through a homogeneous lossy  

V 2  

P i s  the  

E i s  the  

E =  j o k ( a  t j o e )  

permeabili ty of medium 

pe rmi t t i v i ty  of medium 

f i e l d  of s inusoida l  time va r i a -  

medium i s  

- 
E 

In  tne waveguide the  dominant mode i s  the  T E10 mode. F i e ld  

-82 var ia t ions  a r e  of t he  form e , where 1 i s  the  complex propagation 

24 



constant 
I 3 

1. Phase S h i f t  and Attenuation 

b ' =  a +  j g  

The real part of t he  propagation constant a i s  the  a t tenuat ion  

per u n i t  length,  and t h e  imaginary p a r t  p 

If 1, i s  t h e  length of the plasma c e l l ,  a wave i s  at tenuated by e-*% 

and phase s h i f t e d  by- pic. The measured phase s h i f t  i s  the change from 

the  s i t u a t i o n  of the c e l l  w i t h  plasma t o  t h a t  of an empty c e l l .  

i s  t h e  phase s h i f t / u n i t  length.  

where, 

6 i s  the  measured change i n  the phase 

i s  phase s h i f t  constant with no plasma i n  the  c e l l  
$0 

The real  and imaginary pa r t s  o f  the conduct ivi ty  a re  

i.s the  propagation constant i n  air. It i s  given by the  r e l a t i o n  L R  

A I R  a ( 7 3 )  

There i s  no a t tenuat ion  with air as the  medium i n  the  c e l l .  Therefore 

can be wr i t ten  A I R  

Solving f o r  Bo it i s  found 

(75 1 
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Subs t i tu te  r e l a t ions  ( T O ) ,  (71), (72),  and (75) i n t o  equation (69) and 

solve f o r  t he  real  and the  imaginary parts of the  conduct ivi ty  

(77) 

C 

2 2  
6. = 2 2  - Lu po Eo - a  + po - 2 8  
1 up, 

2. The Microwave Interferometer 

The microwave c i r c u i t  i s  an interferometer .  The proper t ies  

of the hybrid "t" junction which mixes the two s igna l s  e and e (see 

Figure 4)  a r e  t h a t  

2 1 

e + e  2 1  
2 (78) e =  a 

e - e  2 1  
2 e =  

b 

jut e i s  the  reference s igna l  = E e 1 

(79) 

e i s  the  reference s igna l  sh i f t ed  and at tenuated by the  
2 

plasma (see Figure 5 ) .  

A = a 1, i s  the  t o t a l  a t tenuat ion  i n  the  c e l l  (82 1 
e and e a r e  the  output e l e c t r i c  f i e l d  ' i n t ens i t i e s  i n  a b 

the  output arms of the  interferometer .  

Subs t i tu te  r e l a t i o n s  (80) and (81) i n t o  (78) and (79) t o  obta in  

= 1 E e j u t  [e-' e 
a 2  e (83) 

(84) 
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Fig.  5.  Basic  Microwave Bridge C i r c u i t  
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The magnitudes of e and eb are the q u a n t i t i e s  detected by a c r y s t a l  

de tec tor .  Thus 

a 

Subs t i t u t e  (85) and (86) i n t o  (83) and (84) and f i n d  

A family of 

of r ad ius  

A family of 

constant s t t enua t ion  curves are c i r c l e s  (see Figure 6) 

constant phase s h i f t  l i n e s  are qua r t i c s .  

4 -2E: I$,2+ Bb 2 2 2  = l$ cos jd (E: + %2) -E 4 2  cos @ ( 8 9 )  Ea 

T t i  f a c t u a l  ca l ib ra t ion  i s  somwhat d i s to r t ed  owing t o  the  non l inea r i t i e s  

01' the c r y s t a l  de tec tor  (see Figure 7 ) .  

The microwave has a negl ig ib le  e f f ec t  on the plasma d i s t r i b u t i o n  

The c r i t e r i o n  is obtained from the  energy b a l a n x  arid average energy. 

2 eri !>at i OLI 
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Fig. 6. Hybrid T Characteristics 
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Fig.  7. Microwave Bridge Ca l ib ra t ion  
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T is the gas temperature 
Q 

E is t h e  m s x i m u m  microwave amplitude 

The c r i t e r i o n  is obtained f’rom the condition 

E <<  1210 volts/meter i n  our case 

o = 9.152 x 10 9 x 2n radfsec 

corresponding t o  157 milliwatts for the T E10 mode. 

passed through t h e  plasm 18 5$ o f  the c r i t i c a l  value. 

The m a x i m u m  power 

3. Attenuation Hessurements 

I n  t h e  late afterglow t he  at tenuat ion i s  very small. The phase 

s h i f t  however i s  not negl ig ib le  and can be measured w i t h  very good accuracy 

i n t o  t h e  late afterglow by assusling it l i e s  on t h e  0 db curve (ac tua l ly  

very c lose  t o  it). 

iriilst be measured t o  make t h e  calculat ions s ince  the  real pa r t  of t he  con- 

d u c t i v i t y  depends on the  product of [r and To measure t h e  a t tenuat ion ,  

s t r a i g h t  a t tenuat ion  mea8urernont.s w e  madet That i s  the  one arm of the  

intaerferometer with t h e  plasma is  used, s ince  we only need t o  measure one 

parameter. There i s  a c r y s t a l  detector  i p  t h i s  a r m  placed j u s t  after %!le 

plasma c e l l ,  

square wave, t h e r e  is a zera  reference signal on the  osci l loscope.  The 

whole pa t t e rn  cry be conveniently displayed on the  500 mv/cm sca le .  

Even though t h e  a t tenus t ion  i s  very c lose  t o  zero it 

Since t h e  microwave signal is amplikbde modulated by ELQ audio 

When 
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t h e  plasma i s  turned on it a t tenuates  t h e  s igna l .  

ure 9 it i s  necessary t o  amplify t h i s  a t tenuat ion .  

guiri L i l t :  Lup par i  or  t h e  s i g n a l  goes off  the  sca l e  v e r t i c a l l y  and cannot 

be brought down by the v e r t i c a l  pos i t ion  cont ro l .  To br ing the  s i g n a l  

down t o  be displayed, a small negative vol tage must be added t o  the  s ig -  

n a l .  

as shown i n  Figure 9. A small negative voltage of cor rec t  magnitude can 

be impressed upon the  s igna l  u n t i l  it comes i n t o  view on the  osci l loscope.  

A s  soon as a p ic ture  of the a t tenuat ion  curve has been made a ca l ib ra t ion  

must be obtained with the  plasma o f f .  By t h i s  method we a re  able t o  use 

the  10 mv/cm sca le  on the  osci l loscope and de tec t  .02 db 

A l s o  see Figure 10. 

A s  i s  seen from Fig-  

However a t  higher 

This t a s k  can be accomplished by a var iab le  b i a s  box arrangement 

a t tenuat ion .  

F.  Relaxation Times 

The mean decrease i n  e l ec t ron  energy assuming no microwave heating 

i s  

The mean f r e e  path i s  approximately independent of the e lec t ron  

ve loc i ty  

Solving (94) for Lm, it i s  given by 

1 L = -  
In Po pc 

S e t  
v - v  

v + v  
o T  
o T  

c =  

V 
2 m  T g =  - - * Lm 

34 
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Fig.  9. Attenuation Measurement 
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Fig. 10. Attenuation Measurement with High Amplification 
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v = e lec t ron  ve loc i ty  a t  t = 0 

v 

0 

= e lec t ron  ve loc i ty  a t  thermal equi l ibr ium T 
then 

The t i m e  t ' f o r  t he  energy 4 u 7 of t h e  e lec t rons  t o  devia te  

by less than  lo$ from the  thermal energy of t h e  gas i s  found from (98) 
0 

16 

L A  v - v  
' = 9.2 x lo2 -"i"- ( 9 9 )  

o T  "T 
A i s  t h e  molecular weight of nitrogen = 28 i n  atomic weight units. 

If vo and v are expressed i n  cm/sec and t h e  first term i n  t h e  brackets  

of (99) i s  neglected then 

T 

Lm A sec = 4.5 x 10-3 - Lm A ' = 3.4 103 - 
112 "T PI (Tg) 

T i s  t h e  gas temperature = 300°K 
g 

i s  obtained from the  r e l a t i o n  (95). Lm 

I - -  a pc Po pc p '  
L = -  - 

€3 
where 

and 

p' i s  the  pressure of t h e  gas i n  mm. of Hg. 

I 

Subs t i t u t e  equation (101) i n t o  equation (loo), to i s  then given by 

(10;) 

( L O 2  ) 
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o r  

p ’  = 5.6, mm 4.2, mm 2-79 mm 

then 
I 

t = 1-7 p sec  30 p sec  72 p sec  
0 

i s  about 15 (cm Torr)-’ f o r  nitrogen. pc 

1.75 mm 

170 p sec 

So t h a t  
I 2.3 x 10 -4 - 

2 
P 

to - 

A t i m e  constant f o r  the  re laxa t ion  t o  a Maxwellian d i s t r i b u t i o n  

can be calculated,  s ince it i s  t h e  c o l l i s i o c s  between the  molecules of 

a gas which cause t h e  d i s t r i b u t i o n  funct ion t o  be Maxwellian. The d i s -  

t r i b u t i o n  function of a gas whose molecules are simply l e f t  t o  c o l l i d e  

among themselves i s  Maxwellian. 

I f  the  gas i s  dis turbed s l i g h t l y  s o  t h a t  f l  has some value 
I 12 

f o  then f l  w i l l  become zero when a c o l l i s i o n  occurs. 
1 

Thus f l  = fo x (p robab i l i t y  a molecule w i l l  t r a v e l  a t i m e  t 

without su f fe r ing  a co l l i s ion )  

I 

f = f x p ( t >  1 0  
where 

Therefore 
-u t m f = f e  1 0  

The assumption t h a t  preferred motion i s  destroyed ind ica t e s  t h e  

use of c o l l i s i o n  frequency f o r  momentum t r a n s f e r .  We the re fo re  introduce 



a r e l axa t ion  time between such co l l i s ions .  Thus 

The c o l l i s i o n  frequency i s  of t h e  order of 

~ ~ “ 1 0  8 /see t o  10 9 /see 

j m , , , . O 1  p sec t o  -001 p sec 

Immediately following the  discharge a Maxwellian d i s t r i b u t i o n  should be 

formed i n  the  absence of source electrons due t o  metastable heat ing.  

Ui th in  the  decaying plasma of an afterglow, the re  are e f f e c t s  which 

Electron energy tend t o  destroy the Maxwellian d i s t r ibu t ion  of e lec t rons .  

approaches room temperature a t  a rate determined by e f f e c t s  which tend 

both t o  increase and decrease the  average e lec t ron  energy.7 

energy i s  removed by the  e l a s t i c  r e c o i l  co l l i s ions  between e lec t rons  of 

mass rn and molecules of mass M, from which the  e l ec t ron  loses  a part 

G = 2m/M of i t s  energy per co l l i s ion?  Electron-ion recombination prefer -  

e n t i a l l y  removes low energy e lec t rons  and increases  average e lec t ron- f ree  

energy. Metastable-metastable in te rac t ions  are a source of high energy 

e l ec t rons .  Metastable-metastable in te rac t ions  tend t o  destroy the  Max- 

wel l ian d i s t r i b u t i o n .  A process t h a t  contributes t o  cooling of the e l ec -  

t rons  i s  d i f fus ion  cooling. 

Electron 
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PART I11 

EXPERIMENTAL RESULTS 

A .  Introduction 

The real and imaginary parts of the  conduct ivi ty  were obtained by  

use of equation (53) and (54).  

computer. 

The da ta  was compiled on an  I l3M 1410 

The c o l l i s i o n  frequency was then obtained from the  equation 

(42) 

where w = 9.153 x 10 9 cycles/sec x 26 radlcycle .  

Pc was calculated on the  bas i s  of a hard sphere model i n t e rac t ion  

between e lec t rons  and ni t rogen molecules, and was giver, b y  averaging equation 

(34) for constant pC 
< u >  P =  

c O > P 0  

< u > i s  r e l a t ed  t o  the e l ec t ron  r ad ia t ion  temperature by t h e  r e l a t i o n  

1 2 
L U ) =  k T = F  m v  2 r m s  

V i s  the  roo t  mean square speed of the  e lec t rons  and i s  given by  rms 

1.08 < v 7 = v r m s  

The temperature i n  the  laboratory was 20 0 C .  < u > was ca lcu la ted  

over the range ,040 - .078 ev. The values obtained f o r  Pc agree r e -  

markably well t o  those obtained by Phelps e t  all7 r a t h e r  than those of 

Anderson and dolds te in  3 . 



It i s  a l s o  revealed t h a t  metastable co l l i s ions  have a marked 

e f f e c t  i n  determining the  ve loc i ty  d i s t r ibu t ion  i n  the  e a r l y  afterglow. 

B. Electron Temperature Measurements 

It i s  seen from the  temperature vs t i m e  measurements t h a t  t h e  

t i m e  t o  relax within 1.6 of the  room temperature i s  much longer than  

predicted by theory (see Table 1). 

tude longer.  The higher t h e  pressure,  t h e  faster t h e  r e l axa t ion  t o  

equi l ibr ium which i s  an expected r e s u l t  (see equation (103). 

e f f e c t  therefore  hea ts  the  plasma during the afterglow. 

It i s  approximately two orders of magni- 

A metastable 

Another i n t e r e s t i n g  e f f e c t  i s  t h e  s l i g h t  increase i n  temperature 

i n  the  e a r l y  afterglow (10 - 20 microseconds). See Figures 18 and 19. 

Thus the  e l ec t ron  source i s  raising t h e  temperature by in j ec t ing  highly 

energe t ic  e lec t rons  i n t o  the afterglow faster than  energy i s  l o s t  by 

c o l l i s i o n s .  It i s  t o  be expected t h a t  the metastable source of high 

energy e lec t rons  i s  of s t ronges t  i n t ens i ty  during the  e a r l y  afterglow, 

and decays with a c h a r a c t e r i s t i c  t i m e  constant.  Thus t h e  d i s t r i b u t i o n  

funct ion should be maintained s t rongly non-Maxwellian during the e a r l y  

afterglow. 

A s  room temperature i s  approached the e l ec t ron  temperature measure- 

0 %?rkts could only be made within +_ 50 K. 

temperature graphs. 

This  f a c t  i s  i l l u s t r a t e d  on the  

C .  Probabi l i ty  of Col l i s ion  

Pc w a s  ca lcu la ted  over the energy .040 - .078 ev. Pc should 

experimentally ca lcu la te  out  as a constant throluhout t h i s  range of energies,  

i f  the  e l ec t ron  d i s t r i b u t i o n  funct ion does not change with time. This 

r e s u l t  should be expected s ince  slow e lec t rons  are d e a l t  with. However, 

Pc 

a tu re  a t  a rate depending on pressure.  

only approaches a constant as the  temperature decays t o  room temper- 

The f i n a l  constant value i s  
41  



approached much more rap id ly  a t  higher pressures.  The c h a r a c t e r i s t i c  

time t o  a t t a i n  a Maxwellian d i s t r i b u t i o n  of e lec t rons  i s  therefore  the 

time it takes Pc t o  ad jus t  t o  a constant.  It can therefore  be surmised 

tha t  co l l i s ions  tend t o  des t roy  the  metastable e l ec t ron  source much more 

r ead i ly  a t  higher gas dens i t i e s .  

the re laxa t ion  t o  a Maxwellian d i s t r i b u t i o n  i s  l e s s  than 45 microseconds. 

Approximately 100 p seconds elapses  before Pc becomes a constant a t  

4.2 mm (see Figure 12) .  Pc 

reaches a constant (see Figure 13) .  The p lo t t ed  points  Pc obtained 

a t  2.7 mm and 1.75 mm must be received with caution s ince the  perturbing 

e f f e c t  of metastables i s  s t i l l  la rge .  Also a t  these lower pressures,  

d i f fus ion  destroys the  uniform s p a t i a l  d i s t r i b u t i o n  of e lec t rons  across  

the  waveguide. So far i n  t h i s  discussion e l ec t ron  dens i ty  has not been 

mentioned. Mainly due t o  the f a c t  it cancels out of the  computation. 

The e lec t ron  dens i ty  i s  of the  order of lolo electrons/cm3 w i t h  t h i s  

experimental set up.18 The neu t r a l  densi ty  i s  about 3 x 

a t  1 mm pressure.  The n e u t r a l  dens i ty  i s  a f ac to r  of 10 grea te r  than 

t h a t  of the e lec t rons  and ions.  However the  e f f e c t s  of e lectron-ion 

co l l i s ions  may not be negl ig ib le  a t  the  lower pressures  and the  theory 

would have t o  be modified accordingly. 

For example a t  5.6 mm (see Figure 12)  

A t  2.7 mm it takes a 140 microsec before 

neutrals/cm 

6 

The average value of probabi l i ty  of c o l l i s i o n  over energy range i s  

obtained by averaging the  experimentally measured values a t  4.2 Torr and 

5.6 Torr. The value of 18.1 1.6 (cm Torr)- '  agrees within 15% of t h a t  

calculated by Phelps a t  these  energies  (see Figure 14) .  

An attempt was made t o  f i n d  a rigorous expression f o r  P,(v) Over 

t he  range .045 t o  .065 ev using equation (35).  Three points  were chosen 

from Figure 15 from the  4.2 mm curve. It must be remembered t h a t  

r.,=$ w .  
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U 1 r  - -  - 
Po 6. 1 

' 03079 

.008074 

.0041gO ,0418 3 140 I I 

<u> Time 
energy microsec 

ev following discharge 

-0655 35 

,0533 70 

Using 

a t  the  three points  i n  t he  t a b l e  t h e  coef f ic ien ts  obtained were 

a = .614 1 

a = -39.4 
2 

a3 = 660 

= 12% 1 a 

2 
- + 2 a 

6 
- U + 2 

24 u21 

P can be ca lcu la ted  from (107) but t h e  numbers vary over t oo  
C 

g rea t  a magnitude. Thus t h i s  i s  another ind ica t ion  t h a t  the d i s t r i b u t i o n  

funct ion must be d i f f e r e n t  from Maxwellian a t  t h i s  pressure during t h e  

e a r l y  afterglow. 

D. Summary 

The f e a s i b i l i t y  of measuring t h e  probabi l i ty  of c o l l i s i o n  of slow 

e lec t rons  over a small energy range by means of a microwave i n t e r f e r o w t e r  

and microwave radiometer has been demonstrated. The e f f e c t  of metastable- 

metastable in t e rac t ions  i s  important during t h e  e a r l y  afterglow. The 

time taken f o r  t h e  plasma e lec t rons  t o  r e l a  t o  a Maxwellian d i s t r i b u t i o n  

t-aries inverse ly  as t h e  gas pressure.  Much more research 
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has t o  be done before the  a c t u a l  metastable-metastable processes a r e  

f u l l y  understood. One means f o r  extending the  energy range over which 

the probabi l i ty  of co l l i s ion  i s  measured would be t o  take the  da t a  a t  

various gas temperatures. 

plasma c e l l  i n  an oven during the  experiment. The value of Pc measured 

This t a s k  can be accomplished by placing the 

-1 
i n  t h i s  experiment was P = 18.1 + 1.6 (cm Torr )  over the  energy range 

.040 t o  ,078 ev. 

C - 
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-1 = 19.8 (cm Torr) 
pC 

Pressure = 5.6 Tor r .  

.18 .20 .25 

Elec t ron  Veloc i ty  - 

Fig .  11. P r o b a b i l i t y  of C o l l i s i o n  as a Funct ion  
of E lec t ron  Ve loc i ty  a t  5.60 Tor r .  
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-1 
P C 

= 16.6 (cm T o r r )  

P res su re  = 4.2 Torr. 

1 I I I I I I I I 1 I 1 
.18 .2 

Elec t ron  Ve loc i ty  - 

Fig .  12.  P r o b a b i l i t y  of C o l l i s i o n  as a Funct ion 
of E lec t ron  Veloc i ty  a t  4.2 Torr. 
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Fig. 13. Probabili ty of Collision as a Function 
of Electron Velocity a t  2.70 Torr and 1.75 Torr 
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Electron Velocity According t o  Various Authors 
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Fig .  16. Decay of Electron Gas Temperature a t  5.6 Torr 
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Fig.  18. Temperature Decay of E l e c t r o n  Gas a t  2.70 Torr 
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